

Preparing the paradigm shift for changing the way space systems are designed, built and operated 11



## PERIOD DEMONSTRATION MAIN OBJECTIVE

From a satellite kit...







...to a functioning assembled satellite, including inspection,

On Orbit Services (OOS) and In Space Manufacturing & Assembly (ISMA) is the way to increase functionality, capacities & resilience of space assets while reducing costs



Demonstrating ISMA capabilities, the PERIOD mission will

initiate the transformation of the lifecycle of space sys-

tems toward higher value, higher system capacities, higher

resilience and lower capital expense, and toward indepen-

dent European capabilities allowing Europe building the

future orbital infrastructure and being competitive on the



reconfiguration, attachment, refuelling.

... via the Orbital Factory...

## **MISSION STATEMENT**



Higher system capacities will be provided by larger re-flectors for communication or telescope and larger hub to integrate and operate numerous payloads.



Higher resilience comes from the built-in servicing capabilities of the spacecraft.

Lower capital expense (Capex) for providing additional and new capacities is made possible as not the overall €. spacecraft needs to be replaced on a regular basis but potentially only the parts related to the payload.

## **ORBITAL FACTORY ACCOMMODATION**



ISMA market.

- $\diamond$  the factory box containing robotic manipulators, required tools, the system avionics and observation hardware.
- $\diamond$  a satellite assembly box including the required material and workbench infrastructure.





After the successful demonstration of the satellite assembly and re-configuration, the empty box will be replaced by an attachment and refueling element providing both the fuel depot as well as to receive a Xenon propellant (used for electrical propulsion).

## **TECHNOLOGY MATURATION & STANDARD INTERFACES BENCHMARKING**



Further development of key technologies of the Strategic Research Cluster's Building Blocks is currently in progress to assure that by the end of the project phase A/B1 (2022) they are at TRL5.

The availability of reliable Standard Interfaces (SIs) is critical for ISMA applications. A benchmarking of the SI technologies SIROM and HOTDOCK is also in progress.













**OUR TEAM** 



