

A methodology for electromechanical evaluation of multifunctional interconnects for on-orbit servicing demonstration

Mehmed Yüksel Mehmed vueksel@dfki.de

16th Symposium on Advanced Space Technologies in Robotics and Automation ASTRA 2022

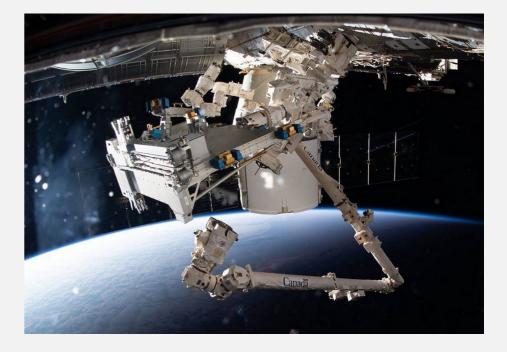
June 2, 2022 ESA-ESTEC, Noordwijk, Netherlands

- Introduction
 - PERIOD Project
- Development of the (electric) test methodology
 - Operational test
 - Electrical Specification Test
 - Interference Test
 - Recovery Test
- Performance of the benchmark electric tests
- Test results management and evolution
 - Need for an ontology
 - Development of PERIOD ontology
 - PERIOD ontology workflow
- Discussion
- Conclusion and Outlook

Page 3 of 29 | mehmed.yueksel@dfki.de | DFKI

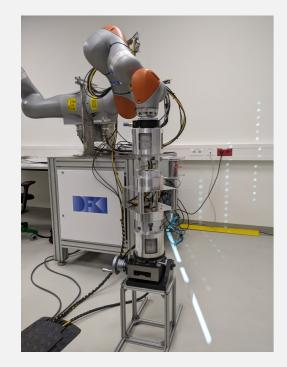
Introduction - The PERASPERA In-Orbit Demonstration (PERIOD) project

- PERIOD is one of the operational grants (OGs) of the third phase of the European Union's Horizon 2020 Space Strategic Research Cluster on Space Robotics Technologies.
- PERIOD aims to increase the maturity of space technologies and prepare them for an in-orbit demonstration.
- PERIOD targets to raise the technology readiness level (TRL) of core technologies and define an orbital demonstration concept for on-orbit servicing and assembly.
 - development of core space robotics software components up to the TRL 5



Introduction - The role of interface

• To transport the large scale object in the orbit is challenging task


- Autonomous assembly of large structures in space is a key challenge for future missions
- Idea: self-deployed objects single piece (in orbit factory)
 - Standard interconnect (SI) to connect (sub)systems in a (re)configurable way.
- Robotics: Interface is necessary for modularity
- Interface is a mechatronic device,
 - covers electric, mechanics and software domains

Credit: Nasa

Introduction - Benchmark Interfaces and Payload mock-ups

All SIs and their adapters (from left to right: iSSI®, HOTDOCK, SIROM)

Passive HOTDOCK on 4U payload mockup

Passive iSSI® on 4U payload mockup

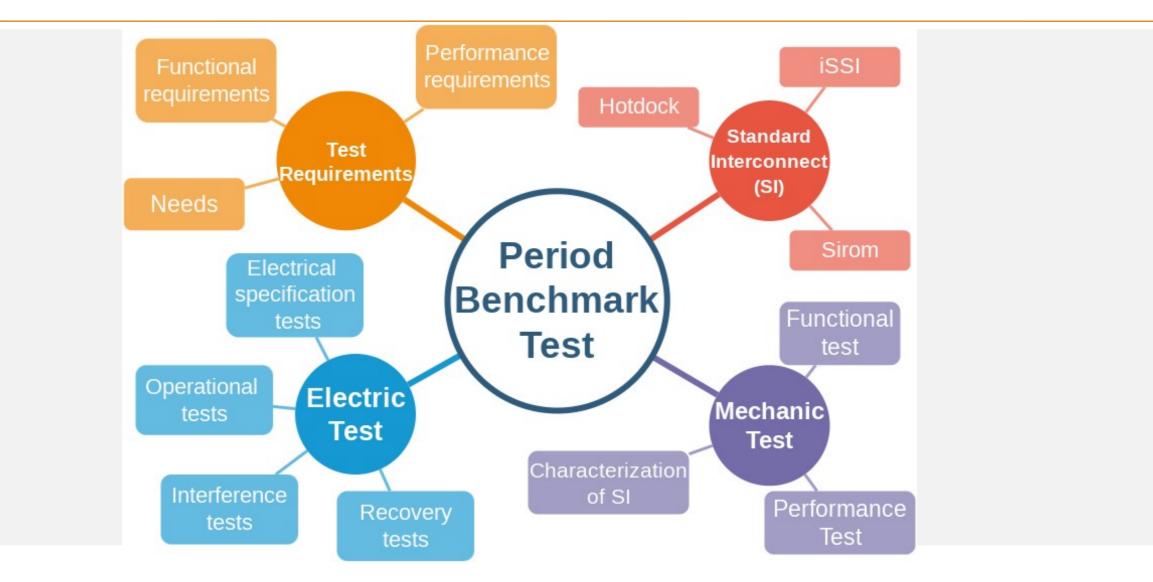
Passive SIROM on 4U payload mockup



The SI providers are (from left to right):HOTDOCK from Space Applications Services, iSSI® from iBOSS GmbH, and SIROM from SENER Aeroespacia

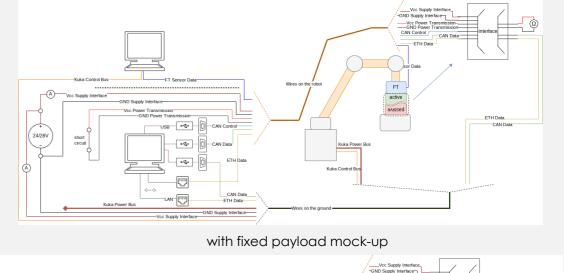
Introduction - Need for Benchmark

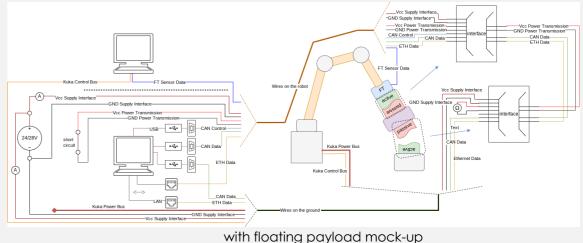
- Test of Standard Interconnect (SI)
 - currently no standard defining a set of features and/or performances
- TRL might be used for this purpose but...
- to perform a TRA
 - a fixed set of performance requirements
 - definition of the operational environment
 - beyond the scope of the current project deliverables
 - TRA is not intended as a method for advancing technologies.
- Our target is **to provide valuable improvement feedback for SI** manufacturers following its potential deployment for robot factories in orbit as a possible demo scenario.

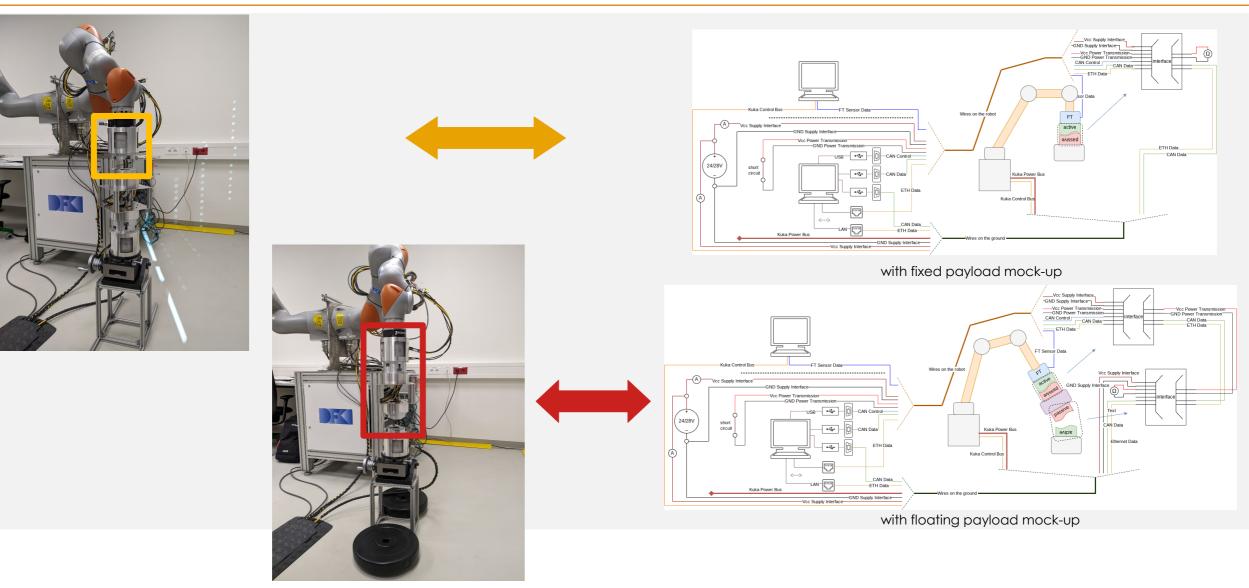


An examplar view for future in-orbit factory Credit: PERIOD project https://PERIOD-h2020.eu/about/orbital-factory

Introduction - DFKI's Task : PERIOD Benchmark Test

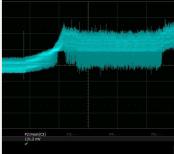


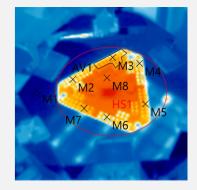

Development of the test methodology


• Mechanical benchmark test

- Test Structure:
 - Characterization of provided SI versions
 - Functional tests of SIs
 - Performance tests of Sis
- Test Configuration
 - with floating payload mock-up
 - with fixed payload mock-up

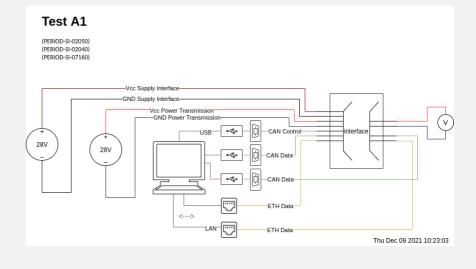

Development of the test methodology

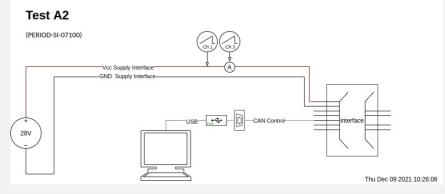




Development of the test methodology

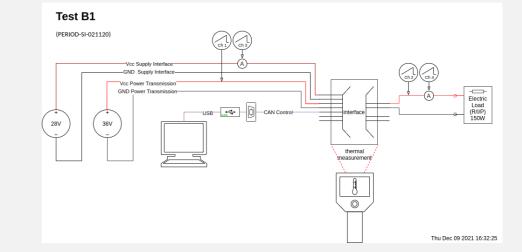
- Electrical benchmark test
 - Operational tests
 - Electrical specification tests
 - Interference tests
 - Recovery tests



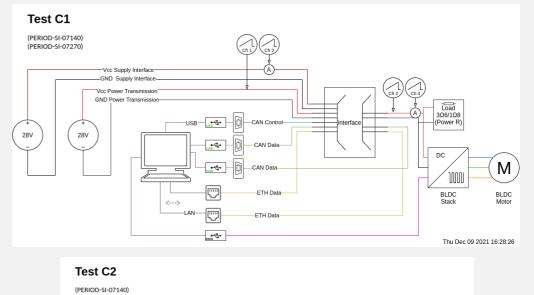


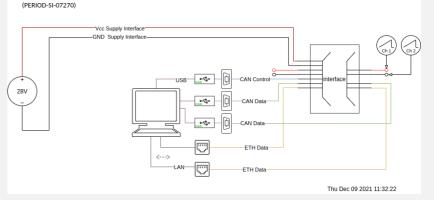
Development of the test methodology to evaluate the SI for electrical aspects

- Operational tests
 - Controllability of interface
 - Primary functions check
 - Coupling
 - Measurement of electrical parameters
 - Transceive of data
 - Functionality in symmetry,
 - Inspection of the specification parameters
 - Consumption in standby, (un)docking process



Development of the test methodology to evaluate the SI for electrical aspects

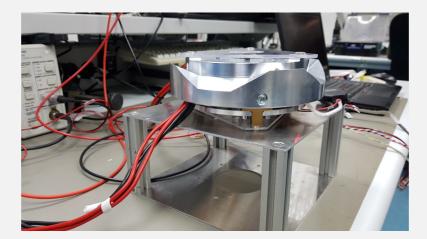

- Electrical specification tests
 - Power line test
 - Power supply and various resistors
 - Data line test
 - Ethernet bus test
 - CAN bus test



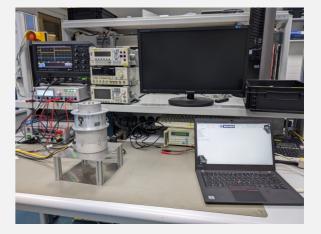
Development of the test methodology to evaluate the SI for electrical aspects

- Interference tests
 - External interference on Data buses.
 - Up to 6A peak on DC 20A @ 28V
 - 100Hz
 - Mutual influence on power bus
 - Ethernet bus
 - CAN bus

Recovery tests

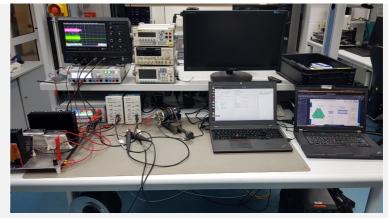

- Realistic recovery cases as critical operating condition critical moments of the SI's
 - coupling state(s)
 - coupled state(s)
 - decoupling state(s)
- The SI **able** to start in an undetermined state, **recognize** its current state, and **continue** operation **without** <u>further problems</u>, malfunctions, or damage.
- Test issues
 - interruption of CAN control communication
 - interruption of power supply

Performance of the benchmark electric tests



Electrical tests with HOTDOCK from Space Applications Services NV

Electrical tests with iSSI® from iBoss GmbH



Electrical tests with SIROM from SENER Aerospacial S.A.

Performance of the benchmark electric tests

- Power transmission test
 - 100-600 W

- Data transmissions test
 - Ethernet bus : Iperf3
 - CAN bus: Debian can-utils

Initial test setup of electrical tests

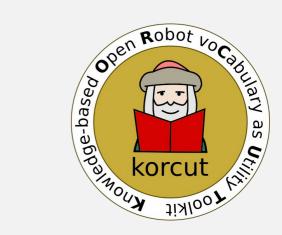

Power Bus Test		Ethernet Bus Test		CAN Bus Test	
Test Voltage	Test Current	Target	Number of	CAN Bus	Delay
		Ethernet	simultaneous	bitrate	between
		Speed	connections		packages
36V	3.5A	1 Mbit/s	1	1 Mbit/s	200ms
28V	15A	10 Mbit/s	5	800 Kbit/s	100ms
28V	15-23A*,	100 Mbit/s	10	500 Kbit/s	50ms
Spec. [†]	Spec. [†]	1000 Mbit/s	25	250 Kbit/s	10ms
-	-	max speed [‡]	50	125 Kbit/s	5ms
				20 Kbit/s	1ms

Table 1: Test parameters of benchmark electric and data tests for SIs. (*) The variable current value used during the interference test. ([†]) The other test values correspond to the specification of the respective SI ([‡]) No forced speed is specified, instead the maximum speed is attempted to be determined

German Research Center for Artificial Intelligence

- Based on the individual test protocols of each tested interface
- To compare SI we rank them using the benchmark test metric
 - Includes 12 evaluation criteria derived from korcut¹ ontology.
 - General criteria
 - Maturity
 - Operability
 - (software) compatibility
 - reliable design and robustness
 - energy consumption
 - telemetry, transmission by rotational symmetry
 - recoverability (resilience, prevention and robustness to external disturbance)
 - Specific criteria [75% / 25%] (Req/Spec)
 - data transmission CAN
 - data transmission LAN
 - power transmission
 - thermal development
 - four-point rating scale (1 poor, 4 best)

¹ Knowledge-based Open Robot voCabullary as Utility Toolkit

• Need for an ontology

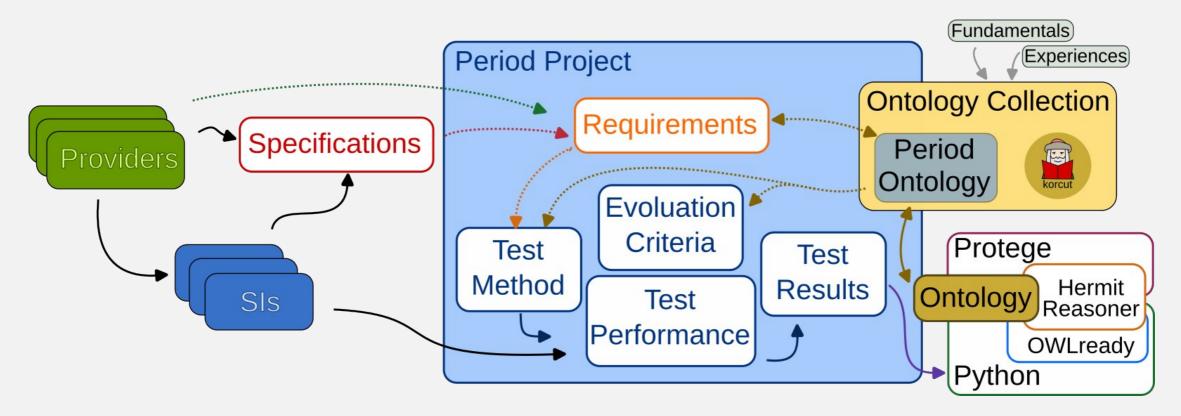
- Each interface has its own specific properties that are not directly comparable and can play an important role depending on the application
- Rich test results need to be represented in a uniform and rich way, allowing dynamic querying or traceability for variable use case requirements
- **Specifications and capabilities** of interfaces can be analyzed individually with additional information (e.g. test method)
- Ontology represents a generic model for the mechatronical level of an interface in a uniform way, which can be used for further tasks (e.g. control of robots)

Development of PERIOD ontology

- Competency questions.
 - What are the electrical properties of the benchmark SI model?
 - Which are the coupling states of the interface?
 - Can a specific interface transmit power / data with certain values?
 - What kind of misalignment capabilities has a particular interface?
- Vocabulary

 - Ready To Capture,
 - Property Of SI
 - Capture Range,
 - Envelope,
 - Technology Readiness Level,

- e.g. Coupling State, Electronics Capability,
 - Coupled_State, Supply_Range,
 - Decoupling_State,
 Data_Transfer_Type,
 - Homing, Latching, Data_Transfer_Range,
 - Power Transfer Range.


¹In this example, due to confidentiality concerns, as test results fictitious test values (e.g. Ethernet speeds) are used to validate the functionality of the ontology and the resulting implicit knowledge.

ile Edit View Reasoner Too	ls Refactor Window Ontop	maxio nep	 Search
Individual_Test_Requirement) Test_F			
WLViz × Individual Hierard		× OntoGraf × med × CHIMP × PG ETI iduals by class × Individuals matrix	SOVA
ctive ontology nnotation properties	× Entities × Indivi Datatypes Individuals	iduals by class × Individuals matrix $\equiv \bigcirc \text{Test Requirement 2} https://w3id.org/yxl/ontologies/perior$	dates period
lasses Object properties	Data properties	Annotations Usage	/umrest_nequ
ass hierarchy: Test_Requirem	ent_2	Annotations: Test Requirement 2	
: : X	Asserted 🕶	Annotations	
owl:Thing		rdfs:comment	080
Individual_Test_Requirement_	nt	A fictitious test requirement that has no relation to the test S	ils. Used only
Dest Requirement 1 Dest Requirement 2		for testing the functionality of the ontology. The reference val related to the tested SI.	ue is not
Fundamentals Fundamentals Fundamentals Fundamentals			
Benchmark_Evolution_chit	eristic_of_Interface		
Electrical_Character	stic_of_Interface Rotational Symmetry	Description: Test_Requirement_2	
	ission_By_Rotation	Equivalent To 🕀	
Data_Transmis	sion_By_Rotation	Individual_Test_Requirement and	0000
- e Ethernet Co	tion_By_Rotational_Symmetry onnect_By_Rotational_Symmet	(hasCapabilityEthernet value capability_Ethernet_1GB)	
Thermal_Develop	ment		
Thermal Devel	opment_Due_To_Power_Trans opment_Due_To_Consumption	Subclass of	_
Software_Compare	ibility	Individual_Test_Requirement	0000
SI_Telemetry SI_Control_Type		Ethernet_1Gbit	
Recoverability_Af	ter_Electrical_Problems		
Electrical_Transfe Energy_Consump		General class axioms 💮	
Active_Mode_C	onsumption_Max_10W	SubClass Of (Anonymous Ancestor)	
Passive Mode	sumption_Max_3W Consumption_Max_0W5	hasCapabilityEthernet value capability_Ethernet_1GB	00
Maturity		hasEthernetTransmissionSpeedMbitMean some xsd:float(>)	
Operability Reliable_Design_And	Robust	900.0f, < 9000.0f]	
Interface_Function			
Period_Peformance_Ba PERIOD-BT-PERF-01	seline_lest	Instances 🕀	00/
PERIOD-BT-PERF-02		test_interface_2	? @8
		Target for Key	
PERIOD-BT-PERF-06			
		Disjoint With 💮	
PERIOD-BT-PERF-09			
Period_Requirements	ent	Disjoint Union Of 🕂	
PERIOD-SI-02120			
PERIOD-SI-02140 PERIOD-SI-07100	🛛 Explanat	ion for test_interface_2 Type `	T 💌
			. · · ·
PERIOD-SI-07160 PERIOD-SI-07270	Show regular justi	fications All justifications	
PERIOD-SI-03060	Show laconic justil	fications C Limit justifications to	
# Orghenical_Require	ment		
PERIOD-IRD-SI-40.	Explanation 1	Display laconic explanation	
PERIOD-SI-07080	Explanation for: te	st_interface_2 Type Test_Requirement_2	
PERIOD-SI-07120		ce_2 Type Individual_Test_Requirement	0
PERIOD-SI-NEED-0		ce_2 hasEthernetTransmissionSpeedMbitMean 990.2f	0
PERIOD-SI-NEED-0	- commentation	Sbit EquivalentTo hasCapabilityEthernet value capability_Ethernet	_1GB
Physical_Object	Ethemet_10	bit EquivalentTo hasEthernetTransmissionSpeedMbitMean some 900.0f , < 9000.0f]	0
V- SI Hotdock	Test_Require	ement_2 EquivalentTo Individual_Test_Requirement and	0
e issi	(hasCapabil	ityEthernet value capability_Ethernet_1GB)	
● Sirom ► ● Space_Interface			_
space_interface		OK	

• PERIOD workflow

Individual: test_interface_1

Types:

Test_Interface

Facts:

hasControlDataInterface control_data_interface_CAN, hasTypeOfDataTransmission type transmission electrical, hasCenterOfMass "0.0;0.0;0.5", hasConsumptionTestStateOperationReady 5, hasCouplingSymmetryRotational 30, hasEthernetTransmissionSpeedMbitMax 99.0f, hasEthernetTransmissionSpeedMbitMean 95.0f, hasEthernetTransmissionSpeedMbitMin 90.0f, hasFunctionPowerTransmission 10, hasMass 1000. hasOperatingVoltageMax 12, hasOperatingVoltageMin 3, hasOperatingVoltageNominal 5, hasSizeX 1, hasSizeY 2, hasSizeZ 3, hasTransmissionPowerCurrentMax 10, hasTransmissionPowerVoltageMax 12, isSITestedForCANSpeedMbits1 true, isSITestedForCANSpeedkbits125 true, isSITestedForCANSpeedkbits20 true, isSITestedForCANSpeedkbits250 true, isSITestedForCANSpeedkbits500 true, isSITestedForCANSpeedkbits800 true

Individual: test_interface_2

Types: Test_Interface

Facts:

hasControlDataInterface control_data_interface_CAN, hasTypeOfDataTransmission type_transmission_optical, hasConsumptionTestStateOperationReady 4, hasDataTransmission 990.2f, hasEthernetTransmission 990.2f, hasEthernetTransmissionSpeedMbitMax 999.0, hasEthernetTransmissionSpeedMbitMean 995.0f, hasEthernetTransmissionSpeedMbitMin 990.0f, hasHeight 2, isVendorProvidingContolSoftware true

Individual: test_interface_1

Types: Test Interface

Facts:

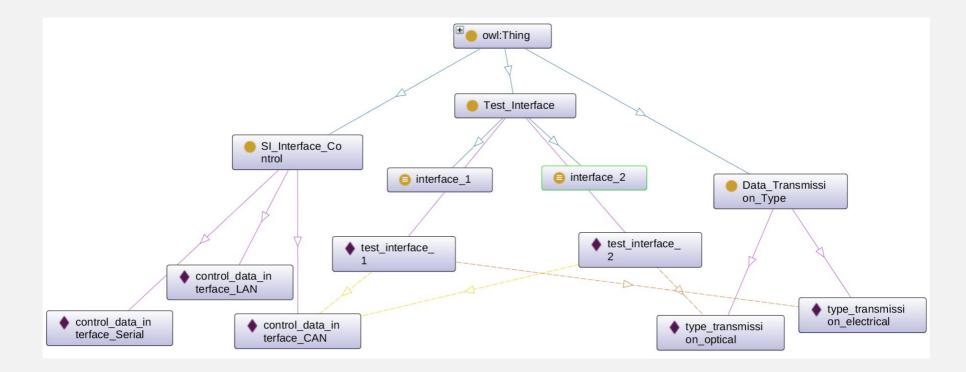
hasControlDataInterface control data interface CAN, hasTypeOfDataTransmission type transmission electrical, hasCenterOfMass "0.0;0.0;0.5", hasConsumptionTestStateOperationReady 5, hasCouplingSymmetryRotational 30, hasEthernetTransmissionSpeedMbitMax 99.0f, hasEthernetTransmissionSpeedMbitMean 95.0f, hasEthernetTransmissionSpeedMbitMin 90.0f, hasFunctionPowerTransmission 10. hasMass 1000. hasOperatingVoltageMax 12, hasOperatingVoltageMin 3, hasOperatingVoltageNominal 5, hasSizeX 1, hasSizeY 2, hasSizeZ 3, hasTransmissionPowerCurrentMax 10. hasTransmissionPowerVoltageMax 12, isSITestedForCANSpeedMbits1 true, isSITestedForCANSpeedkbits125 true, isSITestedForCANSpeedkbits20 true, isSITestedForCANSpeedkbits250 true, isSITestedForCANSpeedkbits500 true, isSITestedForCANSpeedkbits800 true

Individual: test_interface_2

Types: Test_Interface

Facts:

hasControlDataInterface control_data_interface_CAN, hasTypeOfDataTransmission type_transmission_optical, hasConsumptionTestStateOperationReady 4, hasDataTransmission 990.2f, hasEthernetTransmission 990.2f, hasEthernetTransmissionSpeedMbitMax 999.0, hasEthernetTransmissionSpeedMbitMean 995.0f, hasEthernetTransmissionSpeedMbitMin 990.0f, hasHeight 2, isVendorProvidingContolSoftware true



Axiom 1 as requirements criteria (interface_1):

Test_Interface and (hasCapabilityCAN value capability_CAN_kbits_125) and (hasCapabilityEthernet value capability_Ethernet_100Mbit)

Axiom 2 as requirements criteria (interface_2):

Test_Interface and (hasCapabilityEthernet value capability_Ethernet_1GB)

- The development of a benchmark was necessary.
 - Technology Readyness Assesment cannot serve as a method for advancing technologies
 - The used method of SIs was not the same and the results were difficult to compare.
- The test method and performing of the tests:
 - Developed generic test cases in the electrical domain for the data and power transmission
 - Practical and repeatable test in the laboratory environment

Discussion

- Needs for ontology
 - Each interface has its own specific characteristics that are not directly comparable and can play an important role depending on the application.
 - These are also represented as a generic model for the mechatronic level of an interface in a unified ontology.
 - It was important to consider the test boundaries, which change depending on the characteristics of the interface.
 - The ontology was a way to model the interface, test steps, and test result in a unified and rich way, and to share them in a way that allowed comparing interfaces based on specific properties and tasks.
 - The general problem was to link the test method, test object, and result in the ontology and integrate them into a workflow in environment that automatically interacts
 - Thus, we have reached the point that this knowledge about the decision can be used for other purposes (e.g., controlling robots).

Discussion

Using of PERIOD Ontology

- The offline manual use of knowledge collection (evolution criteria) and the online integrated and automated use of the ontology for generic model creation, storage and standardized data exchange is verified in this work.
- The use of korcut and its partial domain extension PERIOD ontology is tested in the area of space interfaces in the context of the real hardware task.

Conclusion

- PERIOD benchmark electrical test
 - Four-step electrical test process
 - To make a recommendation at the end for one of the three tested SI (HOTDOCK, iSSI® and SIROM) for use in the PERIOD demonstration scenario.
- Evolution
 - Application-oriented ontology based 12 criteria for electrical.
- PERIOD ontology as part of the korcut was created.
 - The meta-model of the generic interface
 - A method to distinguish SI
 - To share the test results of the SI

- This method can be further developed and later applied as a standardized basis for selection procedures for multifunctional interconnects that can be used in orbital robotics.
- This method can be used for the development of standards within the European Operation Framework.
- PERIOD ontology as part of korcut will be further used for (space)robotic domain.

Thank you for your attention!

Acknowledgement:

This work has been carried out within the project PERIOD , which is funded by the European Union within the frame of the Horizon 2020 research and innovation programme under grant agreement No 101004151

2022-06-02 | Astra 2022 | Mehmed Yüksel