

### Preliminary definition of a Standard Interconnect Benchmark for On-Orbit Servicing Demonstrator

Wiebke Brinkmann, Marko Jankovic, Jeremi Gancet, Pierre Letier, Joerg Kreisel, Thomas A. Schervan, Isabel Soto, Javier Vinals, Björn Ordoubadian, Annelies Ampe, Torsten Vogel, Marc Manz, Stephane Estable

Contact: Wiebke.Brinkmann@dfki.de

Stardust-R – Second Global Virtual Workshop

16<sup>th</sup> September 2021



1









### In-orbit demonstration of manufacturing on ISS:

Attachment of satellite modules in orbit from a kit with a robotic system

From a satellite kit with Standard Interconnects (SI)





Example of configuration of payload modules with a Standard Interconnect (SI)



...into a functioning assembled satellite, including inspection, reconfiguration, attachment, refuelling.



3



## Role of a Standard Interconnect (SI) in space

- Multifunctional Interconnector with
  - Mechanical connection
  - Electrical connection
  - Data transfer
  - Thermal transfer
- Attached on modular subsystems (e.g. cubesats), various configurations are possible. For example
  - Assembly and / or reconfiguration of a satellite with individual modules (=modular subsystems)
  - in the event of malfunctions in a module, the module can be replaced
  - Attached on both ends of a manipulator, the manipulator can "walk" on the modules and also configure the modules
- The main goal is to reduce space debris by using modular subsystems that are combined (or be replaced in case of malfunction) according to the required tasks via the attached SI.
- Up-to-date there is no recommended Standard Interconnect for (re)configurable modular subsystems in space



PERI









- Focus is on in-orbit use (planetary use is also possible but here other environmental conditions must be considered)
- Evaluation of the performance of the involved Sis for the specific demonstration scenario and associated requirements
  - Attachment of satellite modules in orbital factory (on the Bartolomeo Platform)
  - Satellite reconfiguration in orbital factory (on the Bartolomeo Platform)
- Identification of most suitable candidates for further maturation
  - Recommendation of one SI solution for the phase B2 of the demonstration mission
  - Improve recommendations on the design and operations of SIs
- Long term goal is to define recommendations and golden rules for future in orbit robotic operations





### SI benchmark development methodology



### Demonstration scenarios

|                                                                                                           | Standard I                                                                                   | nterconnec                                            | cts                                                     |                                  |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------|--|
| Identify and<br>analyze<br>characteristics<br>of<br>demonstration<br>scenarios /<br>mission<br>operations | Identify and<br>analyze critical<br>functions /<br>characteristics<br>of SIs to be<br>tested | Standards                                             |                                                         |                                  |  |
|                                                                                                           |                                                                                              | Select<br>applicable<br>standards and<br>requirements | Complete and<br>harmonize<br>applicable<br>requirements | Test plan                        |  |
|                                                                                                           |                                                                                              |                                                       |                                                         | Draft <b>test</b><br><b>plan</b> |  |
|                                                                                                           |                                                                                              | -                                                     |                                                         |                                  |  |
|                                                                                                           |                                                                                              | L                                                     |                                                         |                                  |  |





### Relevant operational phases



### Assembly/reconfiguration of client satellite

- 1. (Grappling of capture interfaces by manipulator)
- 2. Transfer to the mating port
- 3. Insertion into reception interfaces
  - 1. Velocity reduction and misalignment correction
  - 2. Satisfy reception ranges of berthing ports
- 4. Interfaces capture
- 5. Interfaces retraction and structural alignment
- 6. Structural connection
- 7. Utilities connection
  - 1. Power, data, etc.
- 8. (Repeat steps in reverse for reconfiguration)



Sketch of a demonstration scenario to be replicated during benchmark





Relevant characteristics: mechanical (example) PERI

| Mechanical characteristic       | Definition                                                                                                                           |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Method of connection            | Type of connector offered, e.g. pogo pins, crown spring, etc.                                                                        |
| Materials                       | Type of materials used on the SIs, e.g. insulator material, contact material, etc.                                                   |
| Size and mass (optional)        | Physical dimensions of the SIs                                                                                                       |
| Ingress protection (optional)   | Degree of protection provided by mechanical casings and electrical enclosures against intrusion, dust, accidental contact, and water |
| Keying/symmetry                 | Prevention/allowance of mating in an "incorrect" orientation                                                                         |
| Locking/unlocking mechanism     | Mechanisms preventing inadvertent disconnection or poor environmental sealing                                                        |
| Force on EE during capture      | Force exerted on the EE of robot during capture of opposing SI                                                                       |
| Contact retention               | Force exerted on the opposing SI during structural connection                                                                        |
| Mating lifetime                 | Number of mating cycles defining the service life of an SI                                                                           |
| Transfer motion characteristics | Path characteristics of robot EE to achieve reception range SIs                                                                      |
| Reception range                 | Range within which physical contact between the two SIs occurs and capture is possible                                               |



8

# Relevant characteristics: electrical & data (example)



|  | 6. 23  |  |
|--|--------|--|
|  | Sec. 1 |  |
|  |        |  |

| Electrical & Data characteristic | Definition                                                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------|
| Insulator resistance             | Electrical resistance of the insulator material of the connector                                  |
| Maximum voltage                  | Maximum voltage allowed by the electrical interface of the connector                              |
| Working voltage                  | Nominal voltage allowed by the electrical interface of the connector                              |
| Contact current rating           | Connector contact's current limitation, i.e. maximum current the connector contacts can withstand |
| Data bandwidth                   | Maximum rate of data transfer allowed by the connectors                                           |
| Data protocols                   | Type of protocol supported by SIs for data transmission                                           |
|                                  |                                                                                                   |





## List of applicable standards



|                     |               | A second s |
|---------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard            | Applicability | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ECSS-S-ST-00C Rev.1 | TBD           | ECSS system description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ECSS-M-ST-40C Rev.1 | TBD           | Configuration and information management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ECSS-Q-ST-30-02C    | TBD           | Failure modes, effects (and criticality) analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ECSS-Q-ST-60C Rev.2 | TBD           | Electrical, electronic and electromechanical (EEE) components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ECSS-Q-ST-70C Rev.2 | TBD           | Materials, mechanical parts and processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ECSS-E-ST-10        | TBD           | List of system engineering standards (E-10 discipline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ECSS-E-ST-20        | TBD           | List of electrical and optical engineering standards (E-20 discipline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ECSS-E-ST-30        | TBD           | List of mechanical engineering standards (E-30 discipline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ISO 9283:1998       | TBD           | Manipulating industrial robots — Performance criteria and related test methods, <u>URL</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





### Benchmark environment high-level requirements



- Functional tests shall **resemble operational phases** (i.e., assembly, reconfiguration)
- **"Fixed" SI shall be mounted on a horizontal surface** to minimize torques on the EE due to the force of gravity
- **"Floating" SI shall approach the "client" from above** to minimize torques on the EE due to the force of gravity
- Relative position accuracy during manipulation shall mirror performance characteristics of KUKA LBR iiwa
- Reception range of SIs shall be measured using LBR iiwa in Cartesian position control
- "Crawl, walk, run" methodology shall be applied:
  - Start with baseline/nominal conditions for approach and attachment
  - Progressively increase deviation from nominal conditions
  - End at limits allowed by SIs (e.g. max reception range)



KUKA LBR iiwa motions (credit: KUKA AG 2021)





# Benchmark baseline/nominal conditions (to be detailed along with technical requirements)



| Characteristic            | Value                   | Comment                                                                                                                               |
|---------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Relative position         | [0,0,0.1] ± 0.001 m     | Relative position of SIs at start conditions in x, y and z                                                                            |
| Relative<br>orientation   | [0,0,0] ± 1 deg         | Relative orientation of SIs at start conditions in x, y and z                                                                         |
| Repeatability             | ± 0.15 mm               | Position accuracy (ISO 9283) of KUKA LBR iiwa 14 R820                                                                                 |
| Force on end-<br>effector | 0 N                     | Force on end-effector required by an SI to achieve capture within reception range                                                     |
| Maximum voltage           | 12-16 V                 | Maximum unregulated voltage supported by the bus of client satellite(to be confirmed)                                                 |
| Maximum<br>amperage       | 3-4 A                   | Maximum amperage supported by the bus of client satellite (to be confirmed)                                                           |
| Data protocols            | I2C, UART,<br>SpaceWire | Data protocols supported by the bus of client satellite in case<br>of low, medium and high-speed data interfaces (to be<br>confirmed) |









13

"SI only" base configuration

"SI only" benchmark configurations



## Benchmark environment configurations II





"Payload" base configuration

"Payload" benchmark configurations





### Benchmark test procedures: "payload" configuration (example)



### 1. Acquire manipulator start state

- a) Position robot's EE to neutral/base position ( $P_0$ )
- b) Position robot's EE to position  $P_1$  (having a defined misalignment w.r.t.  $P_0$ )

### 2. Execute predefined approach maneuver

Transfer floating SI to fixed SI (position control), i.e. to P<sub>2</sub>

### 3. Achieve reception range of fixed SI

1. Apply force to float SIs (admittance control) to reach  $P_3$ 

- 4. Attempt SIs capture and structural connection
- 5. Attempt utilities connection
- 6. Repeat 10-30 times (ISO9283:1998(E))





## iSSI® version characteristics I



#### • Main configuration:

Two active 3-in-1 iSSI® interfaces (mechanical, power, data 2x optical: Ethernet + CAN-Bus)

#### Additional configurations:

- Active iSSI® with additional FormFit for increase loads and misalignment tolerances
- One active and one passive iSSI® (mechanical, power, data 2x optical: Ethernet + CAN-Bus)

#### • iSSI® characteristics:

- **Dimensions**:
  - Active: Ø138 x 46.45 mm
  - Passive: Ø138 x 46.45 mm (geometry a); Ø138 x 15.00 mm (geometry b)
  - With FormFit (<u>customizable</u>) baseline: Ø 202 x 56.4 mm
- Weight:
  - Active iSSI®: 0.9 kg \*(+ 0.375 kg external Electronic Box current baseline, full integration in development)
  - Passive Geometry A: 0.28 kg / Passive Geometry B: 0.15 kg / FormFit: + 0,8 kg (customizable)
- Misalignment Tolerance:
  - Radial: ±3 mm Angular: ±15° (assuming robotic impedance)
  - With FormFit (customizable) baseline: Radial ±15 mm Angular: ±15°
- Capture range (gap between SI before mating): 8 mm for mating pins, 0 mm for locking
- Rotational Symmetry: 90°, androgynous design
- TM / TC: CAN-Bus protocol
- Power Supply: Interface Control Unit: 24V / CAN-Bus Data I/F: 5V



iSSI® Space active (credit: iBOSS)



iSSI® with customized FormFit Addon-Module for increased coupling tolerances and loads (credit: iBOSS)





## iSSI® version characteristics II



### • Mechanical Interface:

#### **Fixation**: External:

- 1. Option Rear mounting 3x M6
- 2. Option Side mounting 3x M6
- Mechanical Loads (Baseline):
  - Traction / Compression: 6000 N
  - Lateral: 400 N
  - Bending / Torque: 100 Nm
- Mating Duration: 5 to 15 sec, adjustable coupling speed

#### • Data Interface:

- Current baseline: CAN-Bus, Ethernet (in development SpaceWire, UART, 1553B, I2C, SPI ...)
- External: Ethernet Harwin Datamate J-TEK connector + CAN-Bus Harwin Gecko connector
- Internal: Optical Ethernet + Optical CAN-Bus

#### • Power Interface:

- up to 5 kW (50 A @ 100 V)
- External: Harwin Datamate Mix-Tek connector
- Internal: 8x Electrical pins to canted coil spring

### • TM and TC

- External: Harwin Datamate Mix-Tek
- Software: n/a, TM and TC via CAN-Bus protocol
- Environment: operational -40 to +70 °C, non-operational -120 to +180 °C





### HOTDOCK version characteristics I

- Active and Passive HOTDOCK MOSAR versions
- Without integrated thermal sub-system (although fully compatible)
- Final features to be confirmed after PM1
- Benchmarking HOTDOCK characteristics:
  - Dimensions (including casing):
    - Active: Ø 148.5 x 92.4 mm
    - Passive: Ø 120 x 45.6 mm
  - Weight:
    - Active: 1.28 kg
    - Passive: 0.26 kg
  - Form-Fit Misalignment Tolerance: ± 15mm radial, ± 10°
  - Attraction Range: 2mm axial, 2mm radial, ± 2°
  - **Diagonal (Dis)Engagement**: up to 60°
  - Rotational Symmetry: 90°
  - TM / TC: CAN (termination resistor on demand), Micro-D
  - Power Supply: 24V (power consumption max 3W, inrush 1.8A for 8ms), Micro-D (shared with TM/TC)





HOTDOCK (credit: SpaceApps)



PULSAR's integration of HOTDOCKs (credit: SpaceApps)



### HOTDOCK version characteristics II





MOSAR's integration of HOTDOCKs (credit: SpaceApps)



19

View of HOTDOCK's external side (credit: SpaceApps)

### Mechanical Interface:

- Payload External Fixation: 16 x M3
- Mechanical Loads (active to passive, validated):
  - Traction / Compression: 3.5kN
  - Bending: 350Nm

### Data Interface:

- CAN or SpW (TBC for benchmarking, TBD if other protocol)
- External: Micro-D
- Internal: POGO pins (POGO board layout TBC for benchmarking)

#### Power Interface:

- Max 10A @ 100V, Micro-D
- External: Phoenix
- Internal:: POGO pins (POGO board layout TBC for benchmarking)
- Thermal Interface: N.A. (TBC for benchmarking)
- Mating Duration: 20 sec
- Software: Ketchup (free), for control, monitoring (CAN) and firmware update (UART)
- Environment: Laboratory conditions



## SIROM version characteristics I



- Active and Passive SIROM 3.0 versions
- Without integrated thermal sub-system
- Capture switch included (triggers when SIROMs can latch, i.e. below capture range)
- SIROM characteristics:
  - Dimensions (max envelope):
    - Active: Ø 145 x 126.5 mm
    - Passive: Ø 145 x 73 mm
  - Weight:
    - Active: 1.2 kg
    - Passive: 0.4 kg
  - Capture Range (gap between SI before mating):
    - R (roll) & P (pitch): ± 9°; Y (yaw): ± 7°; Radial: ± 6mm; Axial: +13.5mm
    - 6 DOF combination ( $\mu$ ; $\sigma$ ): RPY (0°;1°), Radial (0mm; 2mm, Axial (5mm; 2mm)  $\rightarrow$  98.8% success rate
  - Form-Fit Misalignment Tolerance: ± 11mm radial, ± 20° (R,P,Y)
  - Latching compatibility with arm back drive (gravity or robot forces are not required for latching)
  - Diagonal (Dis)Engagement: up to 70°
  - Rotational Symmetry: 120°
  - TM / TC: CAN (main & redundant)
  - Power Supply: Range: 20-34V (nominal 28V); internal isolation included





SIROM active (left) SIROM passive (right) (credit: SENER Aeroespacial)





### SIROM version characteristics II



#### Mechanical Interface:

- Payload External Fixation: 8 M3 holes & 1 M3 pin hole
- Mechanical Loads (active to passive, tested):
  - Traction: 820N
  - Bending: 98Nm
  - Torque: 50Nm

#### Data Interface:

- CAN or Ethernet. SpaceWire (TBC for benchmarking) External: two DMM connectors (daisy chain connection possibility)
- Internal: POGO pins

#### Power Interface:

- 20A non-controlled (SIROM by-pass)
  - External: Dsub9
  - Internal: POGO pins
- 28V at 3.5A controlled
  - External: two DMM connectors
  - Internal: POGO pins
- Thermal Interface: N.A. for benchmarking
- Mating Duration: 20 sec minimum. Lower speeds can be selected to adjust to robot compliance behavior.
- Software: C (Atmel Studio Development Environment IDE). Control & monitoring: CAN2.0B (CAN Open optional). SW update: SPI
- Environment: TRL6 tested









- Preparation of the test set up
- Implementation of the SI benchmarking tests
- Evaluation and recommendation
- Create basis for definitions of recommendations and golden rules for future in orbit robotic operations

participation on European Operations Framework, October 2021

European Operations Framework







### Any questions?





